Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Excess nutrients and proinflammatory cytokines impart stresses on pancreatic islet β-cells that, if unchecked, can lead to cellular dysfunction and/or death. Among these stress-induced effects is loss of key β-cell transcriptional regulator mRNA and protein levels required for β-cell function. Previously, our lab and others reported that LIM-domain complexes comprised the LDB1 transcriptional co-regulator and Islet-1 (ISL1) transcription factor are required for islet β-cell development, maturation, and function. The LDB1:ISL1 complex directly occupies and regulates key β-cell genes, including MafA, Pdx1, and Slc2a2, to maintain β-cell identity and function. Given the importance of LDB1:ISL1 complexes, we hypothesized that LDB1 and/or ISL1 levels, like other transcriptional regulators, are sensitive to β-cell nutrient and cytokine stresses, likely contributing to β-cell (dys)function under various stimuli. We tested this by treating β-cell lines or primary mouse islets with elevating glucose concentrations, palmitate, or a cytokine cocktail of IL-1β, TNFα, and IFNγ. We indeed observed that LDB1 mRNA and/or protein levels were reduced upon palmitate and cytokine (cocktail or singly) incubation. Conversely, acute high glucose treatment of β-cells did not impair LDB1 or ISL1 levels, but increased LDB1:ISL1 interactions. These observations suggest that LDB1:ISL1 complex formation is sensitive to β-cell stresses and that targeting and/or stabilizing this complex may rescue lost β-cell gene expression to preserve cellular function.

Original publication




Journal article



Publication Date





58 - 68


Transcription factor, co-regulator, cytokine, diabetes, glucose, islet, palmitate, pancreas