Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Distal arthrogryposes (DAs) are a group of disorders characterized by congenital contractures of distal limbs without overt neurological or muscle disease. Unexpectedly, mutations in genes encoding the fast skeletal muscle regulatory proteins troponin T (TnT), troponin I (TnI), and beta-tropomyosin (beta-TM) have been shown to cause autosomal dominant DA. We tested how these mutations affect contractile function by comparing wild-type (WT) and mutant proteins in actomyosin ATPase assays and in troponin-replaced rabbit psoas fibers. We have analyzed all four reported mutants: Arg63His TnT, Arg91Gly beta-TM, Arg174Gln TnI, and a TnI truncation mutant (Arg156ter). Thin filaments, reconstituted using actin and WT troponin and beta-TM, activated myosin subfragment-1 ATPase in a calcium-dependent, cooperative manner. Thin filaments containing either a troponin or beta-TM DA mutant produced significantly enhanced ATPase rates at all calcium concentrations without alternating calcium-sensitivity or cooperativity. In troponin-exchanged skinned fibers, each mutant caused a significant increase in Ca2+ sensitivity, and Arg156ter TnI generated significantly higher maximum force. Arg91Gly beta-TM was found to have a lower actin affinity than WT and form a less stable coiled coil. We propose the mutations cause increased contractility of developing fast-twitch skeletal muscles, thus causing muscle contractures and the development of the observed limb deformities.

Original publication




Journal article



Publication Date





896 - 905


Actins, Amino Acid Substitution, Animals, Arginine, Arthrogryposis, Calcium, Glycine, Humans, Muscle Contraction, Muscle, Skeletal, Mutation, Myosins, Rabbits, Tropomyosin, Troponin I, Troponin T