Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The artificial chromosome represents a useful tool for gene transfer, both as cloning vectors and in chromosome biology research. To generate a Plasmodium artificial chromosome (PAC), we had to first functionally identify and characterize the parasite's centromere. A putative centromere (pbcen5) was cloned from chromosome 5 of the rodent parasite P. berghei based on a Plasmodium gene-synteny map. Plasmids containing pbcen5 were stably maintained in parasites during a blood-stage infection with high segregation efficiency, without drug pressure. pbcen5-containing plasmids were also stably maintained during parasite meiosis and mitosis in the mosquito. A linear PAC (L-PAC) was generated by integrating pbcen5 and telomere into a plasmid. The L-PAC segregated with a high efficiency and was stably maintained throughout the parasite's life cycle, as either one or two copies. These results suggest that L-PAC behaves like a Plasmodium chromosome, which can be exploited as an experimental research tool.

Original publication




Journal article


Cell Host Microbe

Publication Date





245 - 255


Centromere, Chromosomes, Chromosomes, Artificial, Cloning, Molecular, Genetic Engineering, Genetic Vectors, Genetics, Microbial, Plasmodium berghei