Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our main aim in this note, is a further generalization of a result due to D. D. Anderson, i.e., it is shown that if R is a commutative ring, and M a multiplication R-module, such that every prime ideal minimal over Ann (M) is finitely generated, then M contains only a finite number of minimal prime submodules. This immediately yields that if P is a projective ideal of R, such that every prime ideal minimal over Ann (P) is finitely generated, then P is finitely generated. Furthermore, it is established that if M is a multiplication R-module in which every minimal prime submodule is finitely generated, then R contains only a finite number of prime ideals minimal over Ann (M). © 2007 Springer Science + Business Media B.V.

Original publication

DOI

10.1007/s10474-007-6136-0

Type

Journal article

Journal

Acta Mathematica Hungarica

Publication Date

01/01/2008

Volume

118

Pages

1 - 7