Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The standard screening tool for cardiac arrhythmias remains to be the 12-lead electrocardiography (ECG). Despite carrying rich information about different types of arrhythmias, it is considered bulky, high-cost, and often hard to use. In this study, we sought to investigate the efficiency of using 6-lead, 4-lead, 3 -lead, and 2-lead ECG in discriminating between 26 arrhythmia types and compare them with the standard 12-lead ECG. as part of PhysioNet/Computing in Cardiology 2021 Challenge. Our team, Care4MyHeart, developed a deep learning approach based on residual convolutional neural networks and Bi-directional long short term memory (ResNet-BiLSTM) to extract deep-activated features from ECG oscillatory components obtained using a novel swarm decomposition (SWD) algorithm. Alongside age and sex, these automated features were combined with hand-crafted features from heart rate variability and SWD components for training and classification. Our approach achieved a challenge score of 0.45, 0.43, 0.44, 0.43, and 0.42 using 10-fold cross-validation using the training set and 0.25, 0.23, 0.24, 0.22, and 0.20 using the hidden test set for 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead, respectively. Our team was ranked the 31/38 with an average all-lead test score of 0.22.

Original publication

DOI

10.23919/CinC53138.2021.9662742

Type

Conference paper

Publication Date

01/01/2021

Volume

2021-September