Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

People with Type 1 diabetes (T1D) require regular exogenous infusion of insulin to maintain their blood glucose concentration in a therapeutically adequate target range. Although the artificial pancreas and continuous glucose monitoring have been proven to be effective in achieving closed-loop control, significant challenges still remain due to the high complexity of glucose dynamics and limitations in the technology. In this work, we propose a novel deep reinforcement learning model for single-hormone (insulin) and dual-hormone (insulin and glucagon) delivery. In particular, the delivery strategies are developed by double Q-learning with dilated recurrent neural networks. For designing and testing purposes, the FDA-accepted UVA/Padova Type 1 simulator was employed. First, we performed long-term generalized training to obtain a population model. Then, this model was personalized with a small data-set of subject-specific data. In silico results show that the single and dual-hormone delivery strategies achieve good glucose control when compared to a standard basal-bolus therapy with low-glucose insulin suspension. Specifically, in the adult cohort (n = 10), percentage time in target range 70, 180 mg/dL improved from 77.6% to 80.9% with single-hormone control, and to 85.6% with dual-hormone control. In the adolescent cohort (n = 10), percentage time in target range improved from 55.5% to [Formula: see text] with single-hormone control, and to 78.8% with dual-hormone control. In all scenarios, a significant decrease in hypoglycemia was observed. These results show that the use of deep reinforcement learning is a viable approach for closed-loop glucose control in T1D.

Original publication




Journal article


IEEE journal of biomedical and health informatics

Publication Date





1223 - 1232


Humans, Diabetes Mellitus, Type 1, Insulin, Blood Glucose, Hypoglycemic Agents, Blood Glucose Self-Monitoring, Insulin Infusion Systems, Pancreas, Artificial, Algorithms, Computer Simulation, Adolescent, Adult