Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Dilated cardiomyopathy is characterized by impaired contractility of cardiomyocytes, ventricular chamber dilatation, and systolic dysfunction. Although mutations in genes expressed in the cardiomyocyte are the best described causes of reduced contractility, the importance of endothelial-cardiomyocyte communication for proper cardiac function is increasingly appreciated. In the present study, we investigate the role of the endothelial adhesion molecule platelet endothelial cell adhesion molecule (PECAM-1) in the regulation of cardiac function. METHODS AND RESULTS: Using cell culture and animal models, we show that PECAM-1 expressed in endothelial cells (ECs) regulates cardiomyocyte contractility and cardiac function via the neuregulin-ErbB signaling pathway. Conscious echocardiography revealed left ventricular (LV) chamber dilation and systolic dysfunction in PECAM-1(-/-) mice in the absence of histological abnormalities or defects in cardiac capillary density. Despite deficits in global cardiac function, cardiomyocytes isolated from PECAM-1(-/-) hearts displayed normal baseline and isoproterenol-stimulated contractility. Mechanistically, absence of PECAM-1 resulted in elevated NO/ROS signaling and NRG-1 release from ECs, which resulted in augmented phosphorylation of its receptor ErbB2. Treatment of cardiomyocytes with conditioned media from PECAM-1(-/-) ECs resulted in enhanced ErbB2 activation, which was normalized by pre-treatment with an NRG-1 blocking antibody. To determine whether normalization of increased NRG-1 levels could correct cardiac function, PECAM-1(-/-) mice were treated with the NRG-1 blocking antibody. Echocardiography showed that treatment significantly improved cardiac function of PECAM-1(-/-) mice, as revealed by increased ejection fraction and fractional shortening. CONCLUSIONS: We identify a novel role for PECAM-1 in regulating cardiac function via a paracrine NRG1-ErbB pathway. These data highlight the importance of tightly regulated cellular communication for proper cardiac function.

Original publication

DOI

10.1161/JAHA.114.001210

Type

Journal article

Journal

J Am Heart Assoc

Publication Date

19/01/2015

Volume

4

Keywords

PECAM‐1, cardiomyocyte, cardiomyopathy, endothelial cell, neuregulin‐1, Animals, Cardiomyopathy, Dilated, Cell Communication, Cells, Cultured, Disease Models, Animal, Endothelium, Vascular, Heart Function Tests, Hemodynamics, Humans, Immunoblotting, Immunohistochemistry, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Microscopy, Electron, Transmission, Myocardial Contraction, Myocytes, Cardiac, Platelet Endothelial Cell Adhesion Molecule-1, Polymerase Chain Reaction, Sensitivity and Specificity, Stroke Volume