Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Regulatory T cells (T(regs)) are activated during anergy in response to T cell receptor (TCR) activation and functional immune suppression. Anergy of paediatric T(regs) is partially dependent on intracellular calcium mobility; following TCR activation, T(regs) do not exhibit increased intracellular Ca(2+) concentration ([Ca(2+) ](i)). OBJECTIVE: We determined whether [Ca(2+) ](i) in adult T(regs) defined their anergy, if intracellular Ca(2+) movement was linked to regulatory functions, whether [Ca(2+)](i) was indicative of asthma pathology, and the potential molecular mechanism responsible for Ca(2+) movement in T(regs). METHODS: T(regs) were purified by the magnetic bead method, and their regulatory functions were assessed by monitoring carboxyfluorescein succinimidyl ester-labelled responder T cell proliferation. The Ca(2+) response of Fura-2-labelled cells was measured using a video image analysis system. To analyse the functions of T(regs) at the molecular level, we generated Jurkat Tet-On(®) clones with doxycycline (Dox)-induced forkhead box P3 (FOXP3) protein expression. RESULTS: CD4(+) CD25(+) CD127(-/low) T(regs) from participants without asthma did not elicit Ca(2+) influx in response to TCR activation, exhibited little proliferation and suppressed proliferation of CD4(+) CD25(-) T cells. In contrast, under similar conditions, T(regs) from patients with asthma exhibited increased [Ca(2+)](i) and robust proliferation with partial loss of regulatory functions. FOXP3 protein levels in Tet-On(®) clones were high after both 2- and 5-day Dox treatment; however, 5-day cells were comparable with T(regs) from patients with asthma, whereas 2-day cells were similar to T(regs) from participants without asthma. Increasing [Ca(2+)](i) induced a high level of receptor for activated C kinase 1 (RACK1) expression in 5-day cells. CONCLUSIONS AND CLINICAL RELEVANCE: We confirmed that T(regs) in patients with asthma are functionally impaired and that the abnormal regulatory functions of these cells can be analysed by [Ca(2+)](i) following TCR engagement. Furthermore, the impaired functioning of T(regs) evident in patients with asthma may be due to a high level of RACK1.

Original publication

DOI

10.1111/cea.12375

Type

Journal article

Journal

Clin Exp Allergy

Publication Date

09/2014

Volume

44

Pages

1154 - 1169

Keywords

FOXP3, RACK1, asthma, calcium, regulatory T cell, Adrenal Cortex Hormones, Adult, Aged, Antigens, Surface, Asthma, Calcium, Case-Control Studies, Cell Line, Cell Proliferation, Female, Forkhead Transcription Factors, Gene Expression, Humans, Immunophenotyping, Intracellular Space, Lymphocyte Activation, Male, Middle Aged, Phenotype, Receptors for Activated C Kinase, Receptors, Cell Surface, Risk Factors, T-Lymphocytes, Regulatory