Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have developed a PCR-based short interfering RNA (siRNA) quantification method based on competition between siRNA and a homologous DNA primer for annealing to template DNA, avoiding the requirement for prior conversion of RNA to cDNA. Primers and probe were designed to amplify regions of the human papillomavirus E6 or enhanced green fluorescent protein genes. Having confirmed siRNA could not act as primer for amplicon generation, the lowest competing primer concentration yielding a linear relationship between template DNA amount (0.1-50 ng) and cycle of threshold (Ct) was determined (6.25 nM). Under these conditions addition of sequence-specific siRNA to the competitive quantitative PCR (cqPCR), resulted in a dose-dependent linear increase in Ct value. 2'-O-methyl ribose-modified siRNA retained an ability to inhibit template amplification in serum, unlike unmodified siRNAs that were susceptible to endonucleases. Mismatch-bearing or truncated siRNAs failed to inhibit template amplification confirming sequence specificity and an ability to discriminate between degraded and non-degraded siRNA sequences. Following delivery of E6 siRNA to C33-A cells using oligofectamine or His6 reducible polymers, siRNA uptake was quantified by cqPCR, revealing dose-dependent uptake. We anticipate that cqPCR will allow accurate determination of siRNA pharmacokinetics following in vivo delivery, greatly facilitating development of therapeutic siRNA delivery strategies.

Original publication

DOI

10.1093/nar/gkn903

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

01/2009

Volume

37

Keywords

Cell Line, Tumor, DNA Primers, Green Fluorescent Proteins, Humans, Oncogene Proteins, Viral, Polymerase Chain Reaction, RNA, Small Interfering, Repressor Proteins, Transfection