Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Previous studies of glucocorticoid receptor (GR) function in COPD lung macrophages have used dexamethasone to evaluate inhibition of cytokine production. We have now used the clinically relevant corticosteroid beclomethasone-17-monopropionate (17-BMP) to assess GR function in COPD lung macrophages, and investigated the transactivation of glucocorticoid sensitive genes and GR phosphorylation in addition to cytokine production. Lung macrophages were purified from surgically acquired lung tissue, from patients with COPD, smokers, and non-smokers. The transactivation of glucocorticoid sensitive genes (FKBP51 and GILZ) by 17-BMP were analysed by polymerase chain reaction. 17-BMP suppression of LPS-induced TNFα, IL-6 and CXCL8 was measured by ELISA and GR phosphorylation was measured by immunohistochemistry and Western blot. 17-BMP reduced cytokine release in a concentration dependent manner, with >70% inhibition of all cytokines, and no difference between COPD patients and controls. Similarly, the transactivation of FKBP51 and GILZ, and GR phosphorylation was similar between COPD patients and controls. In this context, GR function in COPD lung macrophages is unaltered. 17-BMP effectively suppresses cytokine production in COPD lung macrophages.

Original publication

DOI

10.1371/journal.pone.0064257

Type

Journal article

Journal

PLoS One

Publication Date

2013

Volume

8

Keywords

Aged, Beclomethasone, Cell Nucleus, Cytokines, Demography, Dexamethasone, Female, Gene Expression Regulation, Humans, Inhibitory Concentration 50, Lipopolysaccharides, Lung, Macrophages, Alveolar, Male, Middle Aged, Phosphorylation, Protein Transport, Pulmonary Disease, Chronic Obstructive, Receptors, Glucocorticoid, Tacrolimus Binding Proteins, Transcription Factors, Transcription, Genetic