Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Arterial aging is a major risk factor for the occurrence of cardiovascular diseases. The aged artery is characterized by endothelial dysfunction and vascular smooth muscle cells altered physiology together with low-grade chronic inflammation. MicroRNA-34a (miR-34a) has been recently implicated in cardiac, endothelial, and endothelial progenitor cell senescence; however, its contribution to aging-associated vascular smooth muscle cells phenotype has not been explored so far. We found that miR-34a was highly expressed in aortas isolated from old mice. Moreover, its well-known target, the longevity-associated protein SIRT1, was significantly downregulated during aging in both endothelial cells and vascular smooth muscle cells. Increased miR-34a as well as decreased SIRT1 expression was also observed in replicative-senescent human aortic smooth muscle cells. miR-34a overexpression in proliferative human aortic smooth muscle cells caused cell cycle arrest along with enhanced p21 protein levels and evidence of cell senescence. Furthermore, miR-34a ectopic expression induced pro-inflammatory senescence-associated secretory phenotype molecules. Finally, SIRT1 protein significantly decreased upon miR-34a overexpression and restoration of its levels rescued miR-34a-dependent human aortic smooth muscle cells senescence, but not senescence-associated secretory phenotype factors upregulation. Taken together, our findings suggest that aging-associated increase of miR-34a expression levels, by promoting vascular smooth muscle cells senescence and inflammation through SIRT1 downregulation and senescence-associated secretory phenotype factors induction, respectively, may lead to arterial dysfunctions.

Original publication




Journal article


J Gerontol A Biol Sci Med Sci

Publication Date





1304 - 1311


Inflammation., MiR-34a, SASP, SIRT1, Vascular aging, Animals, Aorta, Cell Culture Techniques, Cellular Senescence, Endothelial Cells, Humans, Mice, MicroRNAs, Myocytes, Smooth Muscle, Sirtuin 1