Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) is a key target for type 2 diabetes (T2D) treatment. Because endocytic trafficking of agonist-bound receptors is one of the most important routes for regulation of receptor signaling, a better understanding of this process may facilitate the development of new T2D therapeutic strategies. Here, we screened 29 proteins with known functions in G protein-coupled receptor trafficking for their role in GLP-1R potentiation of insulin secretion in pancreatic β-cells. We identify five (clathrin, dynamin1, AP2, sorting nexins [SNX] SNX27, and SNX1) that increase and four (huntingtin-interacting protein 1 [HIP1], HIP14, GASP-1, and Nedd4) that decrease insulin secretion from murine insulinoma MIN6B1 cells in response to the GLP-1 analog exendin-4. The roles of HIP1 and the endosomal SNX1 and SNX27 were further characterized in mouse and human β-cell lines and human islets. While HIP1 was required for the coupling of cell surface GLP-1R activation with clathrin-dependent endocytosis, the SNXs were found to control the balance between GLP-1R plasma membrane recycling and lysosomal degradation and, in doing so, determine the overall β-cell incretin responses. We thus identify key modulators of GLP-1R trafficking and signaling that might provide novel targets to enhance insulin secretion in T2D.

Original publication




Journal article



Publication Date





385 - 399


Animals, Calcium Signaling, Cell Line, Cyclic AMP, DNA-Binding Proteins, Endocytosis, Exenatide, Glucagon-Like Peptide-1 Receptor, Humans, Incretins, Insulin, Insulin Secretion, Insulin-Secreting Cells, Lysosomes, Mice, Microscopy, Electron, Transmission, Peptides, RNA Interference, Recombinant Fusion Proteins, Second Messenger Systems, Sorting Nexins, Tissue Culture Techniques, Venoms