Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Heart failure refers to the inability of the heart to pump enough amount of blood to the body. Nearly 7 million people die every year because of its complications. Current gold-standard screening techniques through echocardiography do not incorporate information about the circadian rhythm of the heart and clinical information of patients. In this vein, we propose a novel approach to integrate 24-hour heart rate variability (HRV) features and patient profile information in a single multi-parameter and color-coded polar representation. The proposed approach was validated by training a deep learning model from 7,575 generated images to predict heart failure groups, i.e., preserved, mid-range, and reduced left ventricular ejection fraction. The developed model had overall accuracy, sensitivity, and specificity of 93%, 88%, and 95%, respectively. Moreover, it had a high area under the receiver operating characteristics curve (AUROC) of 0.88 and an area under the precision-recalled curve (AUPR) of 0.79. The novel approach proposed in this study suggests a new protocol for assessing cardiovascular diseases to act as a complementary tool to echocardiography as it provides insights on the circadian rhythm of the heart and can be potentially personalized according to patient clinical profile information.Clinical relevance- Implementing polar representations with deep learning in clinical settings to supplement echocardiography leverages continuous monitoring of the heart's circadian rhythm and personalized cardiovascular medicine while reducing the burden on medical practitioners.

Original publication

DOI

10.1109/EMBC40787.2023.10341132

Type

Conference paper

Publication Date

07/2023

Volume

2023

Pages

1 - 4

Keywords

Humans, Stroke Volume, Ventricular Function, Left, Deep Learning, Heart Failure, Cardiovascular Diseases