Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The purpose of this work was to take advantage of the new clinical field strength of 3 T to implement and optimize a chemical shift imaging (CSI) acquisition protocol to produce spectra of high quality with high specificity to the myocardium within a clinically feasible scan time. Further, an analysis method was implemented dependent purely on anatomical location of spectra, and as such free from any potential user bias caused by inference from spectral information. Twenty healthy male subjects were scanned on two separate occasions using the optimized CSI protocol at 3 T. Data were analyzed for intra- and inter-subject variability, as well as intra- and inter-observer variability. The average phosphocreatine (PCr)/adenosine triphosphate (ATP) value for scan 1 was 2.07 +/- 0.38 and for scan 2 was 2.14 +/- 0.46, showing no significant difference between scans. Intra-subject variability was 0.43 +/- 0.35 (percentage difference 20%) and the inter-subject coefficient of variation was 18%. The intra-observer variability, assessed as the absolute difference between analyses of the data by a single observer, was 0.14 +/- 0.24 with no significant difference between analyses. The inter-observer variability showed no significant differences between the PCr/ATP value measured by four different observers as demonstrated by an intra-class correlation coefficient of 0.763. The increased signal available at 3 T has improved spatial resolution and thereby increased myocardial specificity without any significant decrease in reproducibility over previous studies at 1.5 T. We present an acquisition protocol that routinely provides high quality spectra and a robust analysis method that is free from potential user bias.

Original publication

DOI

10.1002/nbm.1350

Type

Journal article

Journal

NMR Biomed

Publication Date

05/2009

Volume

22

Pages

405 - 413

Keywords

Adenosine Triphosphate, Heart, Humans, Magnetic Resonance Spectroscopy, Male, Observer Variation, Phosphocreatine, Phosphorus Isotopes, Reproducibility of Results, Sample Size