Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Oxidative stress plays an important role in aging-related neurodegeneration. This study used littermates of WT and Nox2-knockout (Nox2KO) mice plus endothelial cell-specific human Nox2 overexpression-transgenic (HuNox2Tg) mice to investigate Nox2-derived ROS in brain aging. Compared with young WT mice (3-4 months), aging WT mice (20-22 months) had obvious metabolic disorders and loss of locomotor activity. Aging WT brains had high levels of angiotensin II (Ang II) and ROS production; activation of ERK1/2, p53, and γH2AX; and losses of capillaries and neurons. However, these abnormalities were markedly reduced in aging Nox2KO brains. HuNox2Tg brains at middle age (11-12 months) already had high levels of ROS production and activation of stress signaling pathways similar to those found in aging WT brains. The mechanism of Ang II-induced endothelial Nox2 activation in capillary damage was examined using primary brain microvascular endothelial cells. The clinical significance of Nox2-derived ROS in aging-related loss of cerebral capillaries and neurons was investigated using postmortem midbrain tissues of young (25-38 years) and elderly (61-85 years) adults. In conclusion, Nox2 activation is an important mechanism in aging-related cerebral capillary rarefaction and reduced brain function, with the possibility of a key role for endothelial cells.

Original publication

DOI

10.1172/JCI125173

Type

Journal article

Journal

J Clin Invest

Publication Date

22/07/2019

Volume

130

Keywords

Aging, Apoptosis, Neurodegeneration, Neuroscience, endothelial cells