Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We investigated the functional roles of circulating and locally produced angiotensin II (Ang II) in fasting and postprandial adipose tissue blood flow (ATBF) regulation and examined the interaction between Ang II and nitric oxide (NO) in ATBF regulation. Local effects of the pharmacological agents (or contralateral saline) on ATBF, measured with 133Xe wash-out, were assessed using the recently developed microinfusion technique. Fasting and postprandial (75 g glucose challenge) ATBF regulation was investigated in nine lean healthy subjects (age, 29 +/- 3 years; BMI, 23.4 +/- 0.7 kg m(-2)) using local Ang II stimulation, Ang II type 1 (AT1) receptor blockade, and angiotensin-converting enzyme (ACE) inhibition. Furthermore, NO synthase (NOS) blockade alone and in combination with AT1 receptor blockade was used to examine the interaction between Ang II and NO. Ang II induced a dose-dependent decrease in ATBF (10(-9)m: -16%, P = 0.04; 10(-7)m: -33%, P < 0.01; 10(-5)m: -53%P < 0.01). Fasting ATBF was not affected by ACE inhibition, but was increased by approximately 55% (P < 0.01) by AT(1) receptor blockade. NOS blockade induced a approximately 30% (P = 0.001) decrease in fasting ATBF. Combined AT1 receptor and NOS blockade increased ATBF by approximately 40% (P = 0.003). ACE inhibition and AT1 receptor blockade did not affect the postprandial increase in ATBF. We therefore conclude that circulating Ang II is a major regulator of fasting ATBF, and a major proportion of the Ang II-induced decrease in ATBF is NO independent. Locally produced Ang II does not appear to regulate ATBF. Ang II appears to have no major effect on the postprandial enhancement of ATBF.

Original publication

DOI

10.1113/jphysiol.2005.101352

Type

Journal article

Journal

J Physiol

Publication Date

01/03/2006

Volume

571

Pages

451 - 460

Keywords

Adipose Tissue, Adult, Angiotensin II, Dose-Response Relationship, Drug, Drug Synergism, Fasting, Female, Humans, Male, Nitric Oxide, Nitric Oxide Synthase, Peptidyl-Dipeptidase A, Postprandial Period, Receptor, Angiotensin, Type 1, Regional Blood Flow