Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the MRC Weatherall Institute of Molecular Medicine have developed a new platform based on CRISPR/Cas9 technology, to alter the way human cells respond to external signals.

© Shutterstock

Cells are constantly monitoring the environment around them and are programmed to respond to molecular cues in their surroundings in distinct ways – some cues may prompt cells to grow, some lead to cell movement and others initiate cell death. For a cell to remain healthy, these responses must be finely balanced. It took evolution over two billion years to tune these responses and orchestrate their interplay in each and every human cell. But what if we could alter the way our cells respond to certain aspects of their environment? Or make them react to signals that wouldn’t normally provoke a reaction? New research published by scientists at the University of Oxford takes cellular engineering to the next level in order to achieve just that.

In a paper published in Cell Reports, graduate student Toni Baeumler and Associate Professor Tudor Fulga, from the MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, have used a derivative of the CRISPR/Cas9 technology to rewire the way cells respond to extracellular signals. CRISPR/Cas9 frequently makes the headlines as it allows medical researchers to accurately manipulate the human genome – opening up new possibilities for treating diseases. These studies often focus on correcting faulty genes in crops, livestock, mammalian embryos or cells in a dish. However, not all diseases are caused by a defined error in the DNA. In more complex disorders like diabetes and cancer, it may be necessary to completely rewire the way in which cells work.

Read more on the Oxford Science Blog.

We want to hear about your news!

Publishing a paper? Just won an award? Get in touch with communications@rdm.ox.ac.uk

 

Similar stories

High blood sugar levels ‘reprogramme’ stem cells

Findings explain higher risk of heart attack in people with diabetes, even after treatment .

PTH infused insulin pump used as an alternative treatment for young patients with ADH1

Queen Mary University of London and OCDEM researchers develop alternative treatment for patients as young as three months.

Early blood-sugar levels in type 2 diabetes crucial for future prognosis

People who get type 2 diabetes need to gain control of their blood-sugar levels — fast. The years immediately after diagnosis are strikingly critical in terms of their future risk for heart attacks and death.