Contact information
DPHIL PROJECTS AVAILABLE
Colleges
Ladislav Valkovic
PhD
University Research Lecturer
Investigation of energy metabolism in human tissues using ultra high field magnetic resonance spectroscopy.
My research focuses on magnetic resonance (MR) metabolic imaging. This involves quantification of energy metabolites and metabolic reaction rates using MR spectroscopy (MRS), to non-invasively detect metabolic impairments and to monitor therapy outcome. My work focuses on method development for the assessment of energy metabolism of human heart, liver and skeletal muscle in disease. This is crucial to understand the impact of systemic and cardiovascular diseases on these systems. A lot of my work examines interventions of increased physical activity to improve oxidative metabolism and exercise tolerance of elderly people and also to manage individual weight in obesity and diabetes.
I mainly use our ultra-high field (7T) MR system, as it provides exceptional signal-to-noise ratio (SNR), in particular for my phosphorus (31P)-MRS experiments. This improvement in SNR allows me to develop methods to acquire high quality spatially resolved data with high temporal resolution. In particular, I have developed the first clinically feasible technique worldwide that allows assessment of stimulated oxidative energy production rate, in only one exercise repetition. As nothing comes for free, 7T brings several challenges, eg field inhomogeneities. Therefore I also develop techniques to overcome these challenges, eg interleaved excitation with narrow-banded, field insensitive excitation pulse for cardiac energetics quantification. I collaborate with several research groups in Oxford interested in non-invasive oxidative metabolism measurements. I am also a former member of the MRS group at the Medical University of Vienna, and thus, have strong ties to research groups in Central Europe, ie Austria, Slovakia and Czech Republic, interested in MRS method development and exercise interventions.
Recent publications
-
Quantifying the effect of dobutamine stress on myocardial Pi and pH in healthy volunteers: A 31 P MRS study at 7T.
Journal article
Apps A. et al, (2021), Magn Reson Med, 85, 1147 - 1159
-
Effects of contrast agents on relaxation properties of 31P metabolites.
Journal article
Valkovič L. et al, (2020), Magn Reson Med
-
Rapid, $B_1$-insensitive, dual-band quasi-adiabatic saturation transfer
with optimal control for complete quantification of myocardial ATP flux
Journal article
Miller JJ. et al, (2020)
-
Multinuclear MRS at 7T Uncovers Exercise Driven Differences in Skeletal Muscle Energy Metabolism Between Young and Seniors
Journal article
Krumpolec P. et al, (2020), Frontiers in Physiology, 11
-
Use of cardiac magnetic resonance to detect changes in metabolism in heart failure.
Journal article
Watson WD. et al, (2020), Cardiovasc Diagn Ther, 10, 583 - 597
ORCID
0000-0003-2567-3642