Contact information
Colleges
DPHIL OPPORTUNITIES AVAILABLE
Ladislav Valkovič
PhD
Associate Professor of Metabolic Imaging
- Sir Henry Dale Fellow of the Wellcome Trust
Investigation of energy metabolism in human tissues using ultra high field magnetic resonance spectroscopy.
My research focuses on magnetic resonance (MR) metabolic imaging. This involves quantification of energy metabolites and metabolic reaction rates using MR spectroscopy (MRS), to non-invasively detect metabolic impairments and to monitor therapy outcome. My work focuses on method development for the assessment of energy metabolism of human heart, liver and skeletal muscle in disease. This is crucial to understand the impact of systemic and cardiovascular diseases on these systems. A lot of my work examines interventions of increased physical activity to improve oxidative metabolism and exercise tolerance of elderly people and also to manage individual weight in obesity and diabetes.
I mainly use our ultra-high field (7T) MR system, as it provides exceptional signal-to-noise ratio (SNR), in particular for my phosphorus (31P)-MRS experiments. This improvement in SNR allows me to develop methods to acquire high quality spatially resolved data with high temporal resolution. In particular, I have developed the first clinically feasible technique worldwide that allows assessment of stimulated oxidative energy production rate, in only one exercise repetition. As nothing comes for free, 7T brings several challenges, eg field inhomogeneities. Therefore I also develop techniques to overcome these challenges, eg interleaved excitation with narrow-banded, field insensitive excitation pulse for cardiac energetics quantification. I collaborate with several research groups in Oxford interested in non-invasive oxidative metabolism measurements. I am also a former member of the MRS group at the Medical University of Vienna, and thus, have strong ties to research groups in Central Europe, ie Austria, Slovakia and Czech Republic, interested in MRS method development and exercise interventions.
Recent publications
-
Retained Metabolic Flexibility of the Failing Human Heart.
Journal article
Watson WD. et al, (2023), Circulation, 148, 109 - 123
-
Assessment of Cardiac Energy Metabolism, Function, and Physiology in Patients With Heart Failure Taking Empagliflozin: The Randomized, Controlled EMPA-VISION Trial.
Journal article
Hundertmark MJ. et al, (2023), Circulation, 147, 1654 - 1669
-
Compartment‐based Reconstruction of 3D Acquisition‐Weighted
31
P Cardiac MRSI at 7T ‐ a Reproducibility Study
Journal article
Tyler A. et al, (2023), NMR in Biomedicine
-
Detection and alterations of acetylcarnitine (AC) in human liver by 1 H MRS at 3T after supplementation with l-carnitine.
Journal article
Savic D. et al, (2023), Magn Reson Med, 89, 1314 - 1322
-
Supplementation-induced change in muscle carnosine is paralleled by changes in muscle metabolism, protein glycation and reactive carbonyl species sequestering.
Journal article
Schön M. et al, (2022), Physiol Res
ORCID
0000-0003-2567-3642