Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Invasive coronary angiography (ICA) is the gold standard imaging modality during cardiac interventions. Accurate segmentation of coronary vessels in ICA is required for aiding diagnosis and creating treatment plans. Current automated algorithms for vessel segmentation face task-specific challenges, including motion artifacts and unevenly distributed contrast, as well as the general challenge inherent to X-ray imaging, which is the presence of shadows from overlapping organs in the background. To address these issues, we present Temporal Vessel Segmentation Network (TVS-Net) model that fuses sequential ICA information into a novel densely connected 3D encoder-2D decoder structure with a loss function based on elastic interaction. We develop our model using an ICA dataset comprising 323 samples, split into 173 for training, 82 for validation, and 68 for testing, with a relatively relaxed annotation protocol that produced coarse-grained samples, and achieve 83.4% Dice and 84.3% recall on the test dataset. We additionally perform an external evaluation over 60 images from a local hospital, achieving 78.5% Dice and 82.4% recall and outperforming the state-of-the-art approaches. We also conduct a detailed manual re-segmentation for evaluation only on a subset of the first dataset under strict annotation protocol, achieving a Dice score of 86.2% and recall of 86.3% and surpassing even the coarse-grained gold standard used in training. The results indicate our TVS-Net is effective for multi-frame ICA segmentation, highlights the network's generalizability and robustness across diverse settings, and showcases the feasibility of weak supervision in ICA segmentation.

Original publication

DOI

10.1016/j.media.2025.103496

Type

Journal article

Journal

Med Image Anal

Publication Date

18/02/2025

Volume

102

Keywords

Coronary vessels segmentation, Nested encoder decoder, Temporal information, Vessel connectivity, X-ray coronary angiography