Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chemical probes are small molecules with potency and selectivity for a single or small number of protein targets. A good chemical probe engages its target intracellularly and is accompanied by a chemically similar, but inactive molecule to be used as a negative control in cellular phenotypic screening. The utility of these chemical probes is ultimately governed by how well they are developed and characterized. Chemical probes either as single entities, or in chemical probes sets are being increasingly used to interrogate the biological relevance of a target in a disease model. This chapter lays out the core properties of chemical probes, summarizes the seminal and emerging techniques used to demonstrate robust intracellular target engagement. Translation of target engagement assays to disease-relevant phenotypic assays using primary patient-derived cells and tissues is also reviewed. Two examples of epigenetic chemical probe discovery and utility are presented whereby target engagement pointed to novel disease associations elucidated from poorly understood protein targets. Finally, a number of examples are discussed whereby chemical probe sets, or "chemogenomic libraries" are used to illuminate new target-disease links which may represent future directions for chemical probe utility.

Original publication

DOI

10.1016/bs.mie.2018.09.013

Type

Chapter

Publication Date

2018

Volume

610

Pages

27 - 58

Keywords

Cellular assays, Chemical probes, Epigenetics, Patient-derived cellular assays, Target engagement assays, Target identification, Drug Discovery, Drug Evaluation, Preclinical, Epigenesis, Genetic, Humans, Molecular Targeted Therapy, Small Molecule Libraries