Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© Springer Nature Switzerland AG 2018. Cardiac motion estimation and segmentation play important roles in quantitatively assessing cardiac function and diagnosing cardiovascular diseases. In this paper, we propose a novel deep learning method for joint estimation of motion and segmentation from cardiac MR image sequences. The proposed network consists of two branches: a cardiac motion estimation branch which is built on a novel unsupervised Siamese style recurrent spatial transformer network, and a cardiac segmentation branch that is based on a fully convolutional network. In particular, a joint multi-scale feature encoder is learned by optimizing the segmentation branch and the motion estimation branch simultaneously. This enables the weakly-supervised segmentation by taking advantage of features that are unsupervisedly learned in the motion estimation branch from a large amount of unannotated data. Experimental results using cardiac MlRI images from 220 subjects show that the joint learning of both tasks is complementary and the proposed models outperform the competing methods significantly in terms of accuracy and speed.

Original publication

DOI

10.1007/978-3-030-00934-2_53

Type

Conference paper

Publication Date

01/01/2018

Volume

11071 LNCS

Pages

472 - 480