Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P 

Original publication

DOI

10.1038/nature09410

Type

Journal article

Journal

Nature

Publication Date

14/10/2010

Volume

467

Pages

832 - 838

Keywords

Body Height, Chromosomes, Human, Pair 3, Genetic Loci, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Metabolic Networks and Pathways, Multifactorial Inheritance, Phenotype, Polymorphism, Single Nucleotide