Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Context: Adrenal insufficiency (AI) requires lifelong glucocorticoid (GC) replacement. Conventional therapies do not mimic the endogenous cortisol circadian rhythm. Clock genes are essential components of the machinery controlling circadian functions and are influenced by GCs. However, clock gene expression has never been investigated in patients with AI. Objective: To evaluate the effect of the timing of GC administration on circadian gene expression in peripheral blood mononuclear cells (PBMCs) of patients from the Dual Release Hydrocortisone vs Conventional Glucocorticoid Replacement in Hypocortisolism (DREAM) trial. Design: Outcome assessor-blinded, randomized, active comparator clinical trial. Participants and Intervention: Eighty-nine patients with AI were randomly assigned to continue their multiple daily GC doses or switch to an equivalent dose of once-daily modified-release hydrocortisone and were compared with 25 healthy controls; 65 patients with AI and 18 controls consented to gene expression analysis. Results: Compared with healthy controls, 19 of the 68 genes were found modulated in patients with AI at baseline, 18 of which were restored to control levels 12 weeks after therapy was switched: ARNTL [BMAL] (P = 0.024), CLOCK (P = 0.016), AANAT (P = 0.021), CREB1 (P = 0.010), CREB3 (P = 0.037), MAT2A (P = 0.013); PRKAR1A, PRKAR2A, and PRKCB (all P < 0.010) and PER3, TIMELESS, CAMK2D, MAPK1, SP1, WEE1, CSNK1A1, ONP3, and PRF1 (all P < 0.001). Changes in WEE1, PRF1, and PER3 expression correlated with glycated hemoglobin, inflammatory monocytes, and CD16+ natural killer cells. Conclusions: Patients with AI on standard therapy exhibit a dysregulation of circadian genes in PBMCs. The once-daily administration reconditions peripheral tissue gene expression to levels close to controls, paralleling the clinical outcomes of the DREAM trial (NCT02277587).

Original publication

DOI

10.1210/jc.2018-00346

Type

Journal article

Journal

J Clin Endocrinol Metab

Publication Date

01/08/2018

Volume

103

Pages

2998 - 3009

Keywords

Addison Disease, Adrenal Insufficiency, Adult, CLOCK Proteins, Circadian Rhythm, Circadian Rhythm Signaling Peptides and Proteins, Drug Administration Schedule, Female, Gene Expression, Glucocorticoids, Humans, Immune System, Leukocytes, Mononuclear, Male, Middle Aged