Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1- carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole- 3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3- pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of coldtolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

Type

Journal article

Journal

J Microbiol Biotechnol

Publication Date

12/2010

Volume

20

Pages

1724 - 1734

Keywords

Ammonia, Cicer, Cluster Analysis, DNA, Bacterial, DNA, Ribosomal, Hippophae, Hordeum, Indoles, Molecular Sequence Data, Phosphates, Phylogeny, Plant Growth Regulators, Plant Roots, RNA, Ribosomal, 16S, Rahnella, Rhizosphere, Sequence Analysis, DNA, Siderophores, Zea mays