Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP-CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval [CI]: 1.20-1.79, p = 1.68 × 10-4 ). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92-1.18, p = 0.49), 0.94 (95% CI: 0.84-1.05, p = 0.27), and 0.98 (95% CI: 0.85-1.12, p = 0.75) respectively. A genetic risk score for 3-hydoxy-3-methylglutaryl-coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (OR = 0.69, 95% CI: 0.49-0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.

Original publication

DOI

10.1002/ijc.30709

Type

Journal article

Journal

Int J Cancer

Publication Date

15/06/2017

Volume

140

Pages

2701 - 2708

Keywords

Mendelian randomisation, cholesterol, colorectal cancer, hyperlipidaemia, risk, Cholesterol, Colorectal Neoplasms, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hyperlipidemias, Lipoproteins, HDL, Lipoproteins, LDL, Logistic Models, Mendelian Randomization Analysis, Odds Ratio, Polymorphism, Single Nucleotide, Risk Assessment, Risk Factors, Triglycerides