Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

CONTEXT: 5α-Reductase 1 and 2 (SRD5A1, SRD5A2) inactivate cortisol to 5α-dihydrocortisol in addition to their role in the generation of DHT. Dutasteride (dual SRD5A1 and SRD5A2 inhibitor) and finasteride (selective SRD5A2 inhibitor) are commonly prescribed, but their potential metabolic effects have only recently been identified. OBJECTIVE: Our objective was to provide a detailed assessment of the metabolic effects of SRD5A inhibition and in particular the impact on hepatic lipid metabolism. DESIGN: We conducted a randomized study in 12 healthy male volunteers with detailed metabolic phenotyping performed before and after a 3-week treatment with finasteride (5 mg od) or dutasteride (0.5 mg od). Hepatic magnetic resonance spectroscopy (MRS) and two-step hyperinsulinemic euglycemic clamps incorporating stable isotopes with concomitant adipose tissue microdialysis were used to evaluate carbohydrate and lipid flux. Analysis of the serum metabolome was performed using ultra-HPLC-mass spectrometry. SETTING: The study was performed in the Wellcome Trust Clinical Research Facility, Queen Elizabeth Hospital, Birmingham, United Kingdom. MAIN OUTCOME MEASURE: Incorporation of hepatic lipid was measured with MRS. RESULTS: Dutasteride, not finasteride, increased hepatic insulin resistance. Intrahepatic lipid increased on MRS after dutasteride treatment and was associated with increased rates of de novo lipogenesis. Adipose tissue lipid mobilization was decreased by dutasteride. Analysis of the serum metabolome demonstrated that in the fasted state, dutasteride had a significant effect on lipid metabolism. CONCLUSIONS: Dual-SRD5A inhibition with dutasteride is associated with increased intrahepatic lipid accumulation.

Original publication

DOI

10.1210/jc.2015-2928

Type

Journal article

Journal

J Clin Endocrinol Metab

Publication Date

01/2016

Volume

101

Pages

103 - 113

Keywords

3-Oxo-5-alpha-Steroid 4-Dehydrogenase, 5-alpha Reductase Inhibitors, Adipose Tissue, Adult, Carbohydrate Metabolism, Dutasteride, Finasteride, Glucose Clamp Technique, Humans, Insulin Resistance, Lipid Metabolism, Liver, Male, Membrane Proteins, Metabolome, Steroids