Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is conflicting evidence whether intermittent hypoxia in obstructive sleep apnoea (OSA) influences oxidative stress. We hypothesised that withdrawal of continuous positive airway pressure (CPAP) from patients with OSA would raise markers of oxidative stress.59 patients with CPAP-treated moderate-to-severe OSA (oxygen desaturation index (ODI) >20 events·h(-1)) were randomised 1:1 to either stay on CPAP (n=30) or change to sham CPAP (n=29) for 2 weeks. Using samples from two similar studies at two sites, we measured early morning blood malondialdehyde (MDA, a primary outcome in one study and a secondary outcome in the other), lipid hydroperoxides, total antioxidant capacity, superoxide generation from mononuclear cells and urinary F2-isoprostane. We also measured superoxide dismutase as a marker of hypoxic preconditioning. "Treatment" effects (sham CPAP versus CPAP) were calculated via linear regression.Sham CPAP provoked moderate-to-severe OSA (mean ODI 46 events·h(-1)), but blood markers of oxidative stress did not change significantly (MDA "treatment" effect (95% CI) -0.02 (-0.23 to +0.19) μmol·L(-1)). Urinary F2-isoprostane fell significantly by ~30% (-0.26 (-0.42 to -0.10) ng·mL(-1)) and superoxide dismutase increased similarly (+0.17 (+0.02 to +0.30) ng·mL(-1)).We found no direct evidence of increased oxidative stress in patients experiencing a return of their moderate-to-severe OSA. The fall in urinary F2-isoprostane and rise in superoxide dismutase implies that hypoxic preconditioning may have reduced oxidative stress.

Original publication

DOI

10.1183/09031936.00023215

Type

Journal article

Journal

Eur Respir J

Publication Date

10/2015

Volume

46

Pages

1065 - 1071

Keywords

Adult, Aged, Antioxidants, Biomarkers, Continuous Positive Airway Pressure, F2-Isoprostanes, Female, Humans, Hydrogen Peroxide, Hypoxia, Leukocytes, Mononuclear, Linear Models, Lipids, Male, Malondialdehyde, Middle Aged, Oxidative Stress, Oxygen, Sleep Apnea, Obstructive, Superoxide Dismutase, Superoxides, Young Adult