Lymphatic Regulation of Cellular Trafficking.
Jackson DG.
Lymphatic vessels play vital roles in immune surveillance and immune regulation by conveying antigen loaded dendritic cells, memory T cells, macrophages and neutrophils from the peripheral tissues to draining lymph nodes where they initiate as well as modify immune responses. Until relatively recently however, there was little understanding of how entry and migration through lymphatic vessels is organized or the specific molecular mechanisms that might be involved. Within the last decade, the situation has been transformed by an explosion of knowledge generated largely through the application of microscopic imaging, transgenic animals, specific markers and function blocking mAbs that is beginning to provide a rational conceptual framework. This article provides a critical review of the recent literature, highlighting seminal discoveries that have revealed the fascinating ultrastructure of leucocyte entry sites in lymphatic vessels, as well as generating controversies over the involvement of integrin adhesion, chemotactic and haptotactic mechanisms in DC entry under normal and inflamed conditions. It also discusses the major changes in lymphatic architecture that occur during inflammation and the different modes of leucocyte entry and trafficking within inflamed lymphatic vessels, as well as presenting a timely update on the likely role of hyaluronan and the major lymphatic endothelial hyaluronan receptor LYVE-1 in leucocyte transit.