Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Central obesity is associated with increased morbidity and mortality. Preadipocyte proliferation and differentiation contribute to increases in adipose tissue mass, yet the mechanisms that underlie these processes remain unclear. Patients with glucocorticoid excess develop a reversible form of central obesity, but circulating cortisol levels in idiopathic obesity are invariably normal. We have hypothesized that the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), by converting inactive cortisone to active cortisol in adipose tissue, might be an important autocrine regulator of fat mass. Paired omental and sc fat biopsies were obtained from 32 women (median age, 43 yr; range, 28-65; median body mass index, 27.5 kg/m(2); range, 19.7-39.2) undergoing elective abdominal surgery. 11beta-HSD1 activity and mRNA levels were assessed in whole tissue and in isolated preadipocytes and adipocytes using specific enzyme assays and real-time PCR. Preadipocyte proliferation was measured using tritiated thymidine incorporation. Whole adipose tissue 11beta-HSD1 mRNA levels did not differ between omental and sc samples (P = 0.73). In addition, mRNA levels did not correlate with body mass index (omental: r = 0.1; P = 0.6; sc: r = 0.15; P = 0.4). In keeping with earlier studies, 11beta-HSD1 mRNA levels were higher in omental compared with sc preadipocytes. However, in cultured omental preadipocytes, 11beta-HSD1 activity inversely correlated with body mass index (r = -0.47; P = 0.03). In omental preadipocytes, both cortisol and cortisone decreased proliferation (P < 0.05). Inhibition of 11beta-HSD1 with glycyrrhetinic acid partially reversed the cortisone-induced decrease in preadipocyte proliferation (P < 0.05). Enhanced preadipocyte proliferation within omental adipose tissue as a consequence of decreased 11beta-HSD1 mRNA levels and activity may contribute to increases in visceral adipose tissue mass in obese patients.

Original publication

DOI

10.1210/jc.2002-020687

Type

Journal article

Journal

J Clin Endocrinol Metab

Publication Date

12/2002

Volume

87

Pages

5630 - 5635

Keywords

11-beta-Hydroxysteroid Dehydrogenase Type 1, Adipocytes, Adipose Tissue, Adolescent, Adult, Cell Division, Cells, Cultured, Cortisone, Female, Humans, Hydrocortisone, Hydroxysteroid Dehydrogenases, Obesity, Omentum, RNA, Messenger, Reference Values, Stem Cells, Subcutaneous Tissue