Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: The diagnosis of patients with myelodysplastic syndromes (MDS) is largely dependent on morphologic examination of bone marrow aspirates. Several criteria that form the basis of the classifications and scoring systems most commonly used in clinical practice are affected by operator-dependent variation. To identify standardized molecular markers that would allow prediction of prognosis, we have used gene expression profiling (GEP) data on CD34+ cells from patients with MDS to determine the relationship between gene expression levels and prognosis. PATIENTS AND METHODS: GEP data on CD34+ cells from 125 patients with MDS with a minimum 12-month follow-up since date of bone marrow sample collection were included in this study. Supervised principal components and lasso penalized Cox proportional hazards regression (Coxnet) were used for the analysis. RESULTS: We identified several genes, the expression of which was significantly associated with survival of patients with MDS, including LEF1, CDH1, WT1, and MN1. The Coxnet predictor, based on expression data on 20 genes, outperformed other predictors, including one that additionally used clinical information. Our Coxnet gene signature based on CD34+ cells significantly identified a separation of patients with good or bad prognosis in an independent GEP data set based on unsorted bone marrow mononuclear cells, demonstrating that our signature is robust and may be applicable to bone marrow cells without the need to isolate CD34+ cells. CONCLUSION: We present a new, valuable GEP-based signature for assessing prognosis in MDS. GEP-based signatures correlating with clinical outcome may significantly contribute to a refined risk classification of MDS.

Original publication

DOI

10.1200/JCO.2012.45.5626

Type

Journal article

Journal

J Clin Oncol

Publication Date

01/10/2013

Volume

31

Pages

3557 - 3564

Keywords

Aged, Antigens, CD34, Biomarkers, Tumor, Female, Follow-Up Studies, Gene Expression Profiling, Hematopoietic Stem Cells, Humans, Male, Myelodysplastic Syndromes, Neoplastic Stem Cells, Oligonucleotide Array Sequence Analysis, Principal Component Analysis, Prognosis, Survival Rate