Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The immune system has crucial roles in the pathogenesis of multiple sclerosis. While the adaptive immune cell subsets, T and B cells, have been the main focus of immunological research in multiple sclerosis, it is now important to realize that the innate immune system also has a key involvement in regulating autoimmune responses in the central nervous system. Natural killer cells are innate lymphocytes that play vital roles in a diverse range of infections. There is evidence that they influence a number of autoimmune conditions. Recent studies in multiple sclerosis and its murine model, experimental autoimmune encephalomyelitis, are starting to provide some understanding of the role of natural killer cells in regulating inflammation in the central nervous system. Natural killer cells express a diverse range of polymorphic cell surface receptors, which interact with polymorphic ligands; this interaction controls the function and the activation status of the natural killer cell. In this review, we discuss evidence for the role of natural killer cells in multiple sclerosis and experimental autoimmune encephalomyelitis. We consider how a change in the balance of signals received by the natural killer cell influences its involvement in the ensuing immune response, in relation to multiple sclerosis.

Original publication

DOI

10.1093/brain/aws159

Type

Journal article

Journal

Brain

Publication Date

09/2013

Volume

136

Pages

2657 - 2676

Keywords

human leukocyte antigen, killer cell immunoglobulin-like receptors, multiple sclerosis, natural killer cell receptors, natural killer cells, Animals, Antigens, CD, Central Nervous System, Disease Models, Animal, Humans, Immune System, Killer Cells, Natural, Multiple Sclerosis, Receptors, KIR