Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Histone modifications mediate changes in gene expression by altering the underlying chromatin structure or by serving as a binding platform to recruit other proteins. One such modification, histone methylation, was thought to be irreversible until last year when Shi and co-workers broke new ground with their discovery of a lysine-specific histone demethylase (LSD 1). They showed that LSD 1, a nuclear amine oxidase homolog, is a bona fide histone H3 lysine 4 demethylase (Shi et al., 2004). Now, a new study from published in a recent issue of Molecular Cell, together with two studies recently published by and in Nature, reveal that LSD 1's specificity and activity is in fact regulated by associated protein cofactors.

Original publication

DOI

10.1016/j.cell.2005.08.022

Type

Journal article

Journal

Cell

Publication Date

09/09/2005

Volume

122

Pages

654 - 658

Keywords

Chromatin, Histone Demethylases, Histones, Humans, Methylation, Models, Biological, Nucleosomes, Oxidoreductases, N-Demethylating