Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Single-nucleotide polymorphism (SNP) genotypes were recently examined in an 890-kb region flanking the human gene CYP2D6. Single-marker and haplotype-based analyses identified, with genomewide significance (P < 10-7), a 403-kb interval displaying strong linkage disequilibrium (LD) with predicted poor-metabolizer phenotype. However, the width of this interval makes the location of causal variants difficult: for example, the interval contains seven known or predicted genes in addition to CYP2D6. We have developed the Bayesian fine-mapping software coldmap, which, applied to these genotype data, yields a 95% location interval covering only 185 kb and establishes genomewide significance for a causal locus within the region. Strikingly, our interval correctly excludes four SNPs, which individually display association with genomewide significance, including the SNP showing strongest LD (P < 10-34). In addition, coldmap distinguishes homozygous cases for the major CYP2D6 mutation from those bearing minor mutations. We further investigate a selection of SNP subsets and find that previously reported methods lead to a 38% savings in SNPs at the cost of an increase of <20% in the width of the location interval.

Original publication

DOI

10.1073/pnas.2235031100

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

11/11/2003

Volume

100

Pages

13442 - 13446

Keywords

Bayes Theorem, Chromosome Mapping, Cytochrome P-450 CYP2D6, Genotype, Humans, Linkage Disequilibrium, Models, Genetic, Mutation, Phenotype, Phylogeny, Polymorphism, Single Nucleotide, Software