Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

1. The cellular processes involved in the desensitization of the glucagon-like peptide 1 receptors were investigated by measurements of the glucagon-like peptide 1(7-36)amide (GLP-1(7-36)amide)-induced increases in intracellular free Ca2+ concentration ([Ca2+]i) in insulin-secreting beta TC3 cells. 2. In the presence of 11.2 mM glucose, stimulation with GLP-1(7-36)amide led to a small membrane depolarization (< 10 mV), induction of electrical activity and a rapid increase in [Ca2+]i. The increase in [Ca2+]i was not observed in the presence of the L-type Ca(2+)-channel antagonist nifedipine. However, nifedipine was ineffective when applied after addition of GLP-1(7-36)amide. 3. The increase in [Ca2+]i evoked by GLP-1-(7-36)amide was transient and even in the continued presence of the agonist, [Ca2+]i returned to the basal value within 4-5 min. The latter process was slowed, but not prevented, by inhibition of protein kinase C (PKC) by staurosporine and Ro31-8220. 4. Short pretreatment of the cells with the phorbol ester, 4-beta-phorbol-12-beta-myristate-13-alpha-acetate (PMA), an activator of PKC, reduced the GLP-1(7-36)amide-evoked increase in [Ca2+]i by 75%. This effect of PMA was fully reversed by staurosporine and Ro31-8220. 5. The ability of GLP-1(7-36)amide to increase [Ca2+]i disappeared upon pre-exposure of the cells to the hormone (desensitization). This process was maximal within 5 min of exposure to the agonist. Following removal of the agonist from the medium, the ability to respond to subsequent stimulation by GLP-1(7-36)amide recovered gradually with time; half and complete recovery requiring > 20 min and 60 min, respectively. The desensitizing action of GLP-1(7-36)amide persisted in the presence of either staurosporine or forskolin and did not require an elevation of [Ca2+]i. 6. Our data suggest that the GLP-1(7-36)amide-evoked increase in [Ca2+]i is initiated by Ca(2+)-influx though voltage-dependent and nifedipine-sensitive L-type Ca2+ channels but depends principally on Ca2+ mobilization from internal stores for its maintenance. The desensitization of the GLP-1 receptors that occurs in the continued presence of the agonist does not result from the activation of protein kinase A or Ca(2+)-dependent kinases/phosphatases. Our data indicate that activation of PKC may contribute to the desensitization of the GLP-1 receptors but that other (PKC-independent) mechanisms also participate in this process.

Type

Journal article

Journal

Br J Pharmacol

Publication Date

06/1996

Volume

118

Pages

769 - 775

Keywords

Animals, Calcium, Glucagon, Glucose, Insulinoma, Mice, Mice, Inbred Strains, Protein Kinase C, Receptors, Glucagon, Time Factors, Tumor Cells, Cultured