Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Visceral obesity increases risk of insulin resistance and type 2 diabetes. This may partly be due to a region-specific resistance to insulin's antilipolytic effect in visceral adipocytes. We investigated whether adipose tissue releases the vascular peptide endothelin-1 (ET-1) and whether ET-1 could account for regional differences in lipolysis. RESEARCH DESIGN AND METHODS: One group consisted of eleven obese and eleven nonobese subjects in whom ET-1 levels were compared between abdominal subcutaneous and arterialized blood samples. A second group included subjects undergoing anti-obesity surgery. Abdominal subcutaneous and visceral adipose tissues were obtained to study the effect of ET-1 on differentiated adipocytes regarding lipolysis and gene and protein expression. RESULTS: Adipose tissue had a marked net release of ET-1 in vivo, which was 2.5-fold increased in obesity. In adipocytes treated with ET-1, the antilipolytic effect of insulin was attenuated in visceral but not in subcutaneous adipocytes, which could not be explained by effects of ET-1 on adipocyte differentiation. ET-1 decreased the expression of insulin receptor, insulin receptor substrate-1 and phosphodiesterase-3B and increased the expression of endothelin receptor-B (ET(B)R) in visceral but not in subcutaneous adipocytes. These effects were mediated via ET(B)R with signals through protein kinase C and calmodulin pathways. The effect of ET-1 could be mimicked by knockdown of IRS-1. CONCLUSIONS: ET-1 is released from human adipose tissue and links fat accumulation to insulin resistance. It selectively counteracts insulin inhibition of visceral adipocyte lipolysis via ET(B)R signaling pathways, which affect multiple steps in insulin signaling.

Original publication




Journal article



Publication Date





378 - 386


Adaptor Proteins, Signal Transducing, Adipocytes, Adult, Aged, Body Mass Index, Endothelin-1, Female, Gene Expression Regulation, Humans, Insulin Receptor Substrate Proteins, Insulin Resistance, Lipolysis, Male, Middle Aged, Obesity, RNA Interference, Reference Values