Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND AIMS: The diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) requires advanced imaging, precluding large-scale preclinical testing. Artificial intelligence (AI)-enabled transthoracic echocardiography (TTE) and electrocardiography (ECG) may provide a scalable strategy for preclinical monitoring. METHODS: This was a retrospective analysis of individuals referred for nuclear cardiac amyloid testing at the Yale-New Haven Health System (YNHHS, internal cohort) and Houston Methodist Hospitals (HMH, external cohort). Deep learning models trained to discriminate ATTR-CM from age/sex-matched controls on TTE videos (AI-Echo) and ECG images (AI-ECG) were deployed to generate study-level ATTR-CM probabilities (0%-100%). Longitudinal trends in AI-derived probabilities were examined using age/sex-adjusted linear mixed models, and their discrimination of future disease was evaluated across preclinical stages. RESULTS: Among 984 participants at YNHHS (median age 74 years, 44.3% female) and 806 at HMH (median age 69 years, 34.5% female), 112 (11.4%) and 174 (21.6%) tested positive for ATTR-CM, respectively. Across cohorts and modalities, AI-derived ATTR-CM probabilities from 7352 TTEs and 32 205 ECGs diverged as early as 3 years before diagnosis in cases vs controls (ptime(x)group interaction  ≤ .004). Among those with both AI-Echo and AI-ECG probabilities available 1 to 3 years before nuclear testing [n = 433 (YNHHS) sand 174 (HMH)], a double-negative screen at a 0.05 threshold [164 (37.9%) and 66 (37.9%), vs all else] had 90.9% and 85.7% sensitivity (specificity of 40.3% and 41.2%), whereas a double-positive screen [78 (18.0%) and 26 (14.9%), vs all else] had 85.5% and 88.9% specificity (sensitivity of 60.6% and 42.9%). CONCLUSIONS: Artificial intelligence-enabled echocardiography and electrocardiography may enable scalable risk stratification of ATTR-CM during its preclinical course.

Original publication

DOI

10.1093/eurheartj/ehaf450

Type

Journal article

Journal

Eur Heart J

Publication Date

18/07/2025

Keywords

Artificial intelligence, Cardiac amyloidosis, Echocardiography, Electrocardiography, Screening, Transthyretin