Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tuneable retarder arrays, such as spatially patterned liquid crystal devices, have given rise to impressive photonic functionality, fuelling diverse applications ranging from microscopy and holography to encryption and communications. Presently these solutions are limited by the controllable degrees of freedom of structured matter, hindering applications that demand photonic systems with high flexibility and reconfigurable topologies. Here we demonstrate a compound modulator that implements a synthetic tuneable arbitrary retarder array as virtual pixels derived by cascading low functionality tuneable devices, realising full dynamic control of its arbitrary elliptical axis geometry, retardance value, and induced phase. Our approach offers unprecedented functionality that is user-defined and possesses high flexibility, allowing our modulator to act as a new beam generator, analyser, and corrector, opening an exciting path to tuneable topologies of light and matter.

Original publication

DOI

10.1038/s41467-025-59846-4

Type

Journal article

Journal

Nat Commun

Publication Date

27/05/2025

Volume

16