Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Emerging electronic skins (E-Skins) offer continuous, real-time electrophysiological monitoring. However, daily mechanical scratches compromise their functionality, underscoring urgent need for self-healing E-Skins resistant to mechanical damage. Current materials have slow recovery times, impeding reliable signal measurement. The inability to heal within 1 minute is a major barrier to commercialization. A composition achieving 80% recovery within 1 minute has not yet been reported. Here, we present a rapidly self-healing E-Skin tailored for real-time monitoring of physical and physiological bioinformation. The E-Skin recovers more than 80% of its functionality within 10 seconds after physical damage, without the need of external stimuli. It consistently maintains reliable biometric assessment, even in extreme environments such as underwater or at various temperatures. Demonstrating its potential for efficient health assessment, the E-Skin achieves an accuracy exceeding 95%, excelling in wearable muscle strength analytics and on-site AI-driven fatigue identification. This study accelerates the advancement of E-Skin through rapid self-healing capabilities.

Original publication

DOI

10.1126/sciadv.ads1301

Type

Journal article

Journal

Sci Adv

Publication Date

14/02/2025

Volume

11

Keywords

Machine Learning, Humans, Wearable Electronic Devices, Movement, Monitoring, Physiologic