Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interventions to treat coronary artery disease are available but they must be targeted at the correct individuals (and indeed lesions), in order to gain maximal benefit with the minimal adverse effects. Coronary contrast angiography is not able to provide all the information required for the assessment of the effects of artery disease. Other imaging modalities are of growing importance as they can reduce radiation exposure and invasiveness of screening, as well as providing important extra information. The ideal 'multiparametric' imaging technique would assess anatomy, viability and lesion activity in a single quick scan. Currently, MRI is the technology closest to achieving this ideal, although the existing technology still has some limitations. This review discusses the currently available techniques for the imaging of coronary anatomy and of myocardial viability, and considers their benefits and limitations. We also discuss the developing field of imaging molecularly targeted to active coronary lesions. Finally we provide a 5-year view of the current and likely future optimal imaging strategies.

Original publication

DOI

10.1586/14779072.7.3.299

Type

Journal

Expert Rev Cardiovasc Ther

Publication Date

03/2009

Volume

7

Pages

299 - 310

Keywords

Clinical Trials as Topic, Coronary Angiography, Coronary Artery Disease, Humans, Magnetic Resonance Angiography, Magnetic Resonance Imaging, Positron-Emission Tomography, Tomography, Emission-Computed, Single-Photon