Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The calcium-sensing receptor (CaSR) has a critical role in maintaining serum calcium concentrations within the normal physiological range, and mutations in the receptor, or components of its signaling and trafficking pathway, cause disorders of calcium homeostasis. Inactivating mutations cause neonatal severe hyperparathyroidism or familial hypocalciuric hypercalcemia (FHH), while gain-of-function mutations cause autosomal dominant hypocalcemia (ADH). Characterizing the functional impact of mutations of the CaSR, and components of the CaSR-signaling pathway, is clinically important to enable correct diagnoses of FHH and ADH, optimize management, and prevent inappropriate parathyroidectomy or vitamin D supplementation. CaSR signals predominantly by activating the G-alpha subunit-11 to mobilize calcium release from intracellular stores. Thus, measurement of CaSR-induced intracellular calcium (Ca2+i) signaling is the gold standard method to investigate the pathogenicity of CaSR genetic variants. This protocol describes a method to assess CaSR-induced Ca2+I signaling using the Indo-1 calcium indicator dye and flow cytometry. This method has been used to assess multiple genetic variants in CaSR and components of its signaling and trafficking pathway in HEK293 cells.

Original publication

DOI

10.1007/978-1-0716-4164-4_4

Type

Journal article

Journal

Methods Mol Biol

Publication Date

2025

Volume

2861

Pages

43 - 55

Keywords

Adaptor protein-2 sigma subunit, Calcium flux, Calcium homeostasis, G-alpha protein-11, Hyper−/hypocalcemia, Parathyroid hormone, Receptors, Calcium-Sensing, Humans, Calcium, Flow Cytometry, Calcium Signaling, HEK293 Cells, Mutation