Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. We aimed to examine an application of artificial intelligence (AI) to electrocardiographic (ECG) images as a surrogate for imaging risk biomarkers, and its association with early CTRCD. Methods: Across a U.S.-based health system (2013-2023), we identified 1,550 patients (age 60 [IQR:51-69] years, 1223 [78.9%] women) without cardiomyopathy who received anthracyclines and/or trastuzumab for breast cancer or non-Hodgkin lymphoma and had ECG performed ≤12 months before treatment. We deployed a validated AI model of left ventricular systolic dysfunction (LVSD) to baseline ECG images and defined low, intermediate, and high-risk groups based on AI-ECG LVSD probabilities of <0.01, 0.01 to 0.1, and ≥0.1 (positive screen), respectively. We explored the association with early CTRCD (new cardiomyopathy, heart failure, or left ventricular ejection fraction [LVEF]<50%), or LVEF<40%, up to 12 months post-treatment. In a mechanistic analysis, we assessed the association between global longitudinal strain (GLS) and AI-ECG LVSD probabilities in studies performed within 15 days of each other. Results: Among 1,550 patients without known cardiomyopathy (median follow-up: 14.1 [IQR:13.4-17.1] months), 83 (5.4%), 562 (36.3%) and 905 (58.4%) were classified as high, intermediate, and low risk by baseline AI-ECG. A high- vs low-risk AI-ECG screen (≥0.1 vs <0.01) was associated with a 3.4-fold and 13.5-fold higher incidence of CTRCD (adj.HR 3.35 [95%CI:2.25-4.99]) and LVEF<40% (adj.HR 13.52 [95%CI:5.06-36.10]), respectively. Post-hoc analyses supported longitudinal increases in AI-ECG probabilities within 6-to-12 months of a CTRCD event. Among 1,428 temporally-linked echocardiograms and ECGs, AI-ECG LVSD probabilities were associated with worse GLS (GLS -19% [IQR:-21 to -17%] for probabilities <0.1, to -15% [IQR:-15 to -9%] for ≥0.5 [p<0.001]). Conclusions: AI applied to baseline ECG images can stratify the risk of early CTRCD associated with anthracycline or trastuzumab exposure in the setting of breast cancer or non-Hodgkin lymphoma therapy.

Original publication

DOI

10.1161/CIRCOUTCOMES.124.011504

Type

Journal article

Journal

Circ Cardiovasc Qual Outcomes

Publication Date

02/09/2024