Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Binding of infected erythrocytes to brain venules is a central pathogenic event in the lethal malaria disease complication, cerebral malaria. The only parasite adhesion trait linked to cerebral sequestration is binding to intercellular adhesion molecule-1 (ICAM-1). In this report, we show that Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) binds ICAM-1. We have cloned and expressed PfEMP1 recombinant proteins from the A4tres parasite. Using heterologous expression in mammalian cells, the minimal ICAM-1 binding domain was a complex domain consisting of the second Duffy binding-like (DBL) domain and the C2 domain. Constructs that contained either domain alone did not bind ICAM-1. Based on phylogenetic criteria, there are five distinct PfEMP1 DBL types designated alpha, beta, gamma, delta, and epsilon. The DBL domain from the A4tres that binds ICAM-1 is DBLbeta type. A PfEMP1 cloned from a distinct ICAM-1 binding variant, the A4 parasite, contains a DBLbeta domain and a C2 domain in tandem arrangement similar to the A4tres PfEMP1. Anti-PfEMP1 antisera implicate the DBLbeta domain from A4var PfEMP1 in ICAM-1 adhesion. The identification of a P. falciparum ICAM-1 binding domain may clarify mechanisms responsible for the pathogenesis of cerebral malaria and lead to interventions or vaccines that reduce malarial disease.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





1766 - 1771


Amino Acid Sequence, Animals, Antibodies, CD36 Antigens, COS Cells, Cell Adhesion, Cell Adhesion Molecules, Cloning, Molecular, Erythrocytes, Intercellular Adhesion Molecule-1, Malaria, Cerebral, Molecular Sequence Data, Peptide Fragments, Plasmodium falciparum, Protein Binding, Protozoan Proteins, Recombinant Proteins, Sequence Alignment, Transfection