Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. However, about 50% of Europe remains mildly iodine deficient, and iodine intakes in other industrialized countries, including the United States and Australia, have fallen in recent years. Iodine deficiency during pregnancy and infancy may impair growth and neurodevelopment of the offspring and increase infant mortality. Deficiency during childhood reduces somatic growth and cognitive and motor function. Assessment methods include urinary iodine concentration, goiter, newborn TSH, and blood thyroglobulin. But assessment of iodine status in pregnancy is difficult, and it remains unclear whether iodine intakes are sufficient in this group, leading to calls for iodine supplementation during pregnancy in several industrialized countries. In most countries, the best strategy to control iodine deficiency in populations is carefully monitored universal salt iodization, one of the most cost-effective ways to contribute to economic and social development. Achieving optimal iodine intakes from iodized salt (in the range of 150-250 microg/d for adults) may minimize the amount of thyroid dysfunction in populations. Ensuring adequate iodine status during parenteral nutrition has become important, particularly in preterm infants, as the use of povidone-iodine disinfectants has declined. Introduction of iodized salt to regions of chronic iodine deficiency may transiently increase the incidence of thyroid disorders, but overall, the relatively small risks of iodine excess are far outweighed by the substantial risks of iodine deficiency.

Original publication

DOI

10.1210/er.2009-0011

Type

Journal article

Journal

Endocr Rev

Publication Date

06/2009

Volume

30

Pages

376 - 408

Keywords

Cognition Disorders, Growth Disorders, Humans, Iodine, Prevalence, Sodium Chloride, Dietary, Thyroid Diseases, Thyroid Hormones