Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: The gut microbiota contribute otherwise impossible metabolic functions to the human host. Shifts in the relative proportions of gut microbial communities in adults have been correlated with intestinal disease and have been associated with obesity. The aim of this study was to elucidate differences in gut microbial compositions and metabolite concentrations of obese versus normal-weight children. MATERIALS AND METHODS: Fecal samples were obtained from obese (n=15; mean body mass index (BMI) s.d. score=1.95) and normal-weight (n=15; BMI s.d. score=-0.14) Swiss children aged 8-14 years. Composition and diversity of gut microbiota were analyzed by qPCR and temperature gradient gel electrophoresis (TGGE). RESULTS: No significant quantitative differences in gut microbiota communities of obese and normal-weight children were identified. Microbial community profiling by TGGE revealed a high degree of both intra- and intergroup variation. Intergroup comparison of TGGE profiles failed to identify any distinct populations exclusive to either obese or normal-weight children. High-pressure liquid chromatography analysis identified significantly higher (P<0.05) concentrations of short-chain fatty acids (SCFA) butyrate and propionate in obese versus normal-weight children. Significantly lower concentrations of intermediate metabolites were detected in obese children, suggesting exhaustive substrate utilization by obese gut microbiota. CONCLUSIONS: Our results indicate that a dysbiosis may be involved in the etiology of childhood obesity. In turn, aberrant and overactive metabolic activity within the intestine could dictate survival or loss of individual microbial communities, leading to the altered population ratios previously identified in adult obesity.

Original publication

DOI

10.1038/nutd.2011.8

Type

Journal article

Journal

Nutr Diabetes

Publication Date

18/07/2011

Volume

1