Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Iron deficiency (ID) and malaria co-exist in tropical regions and both contribute to high rates of anaemia in young children. It is unclear whether iron fortification combined with intermittent preventive treatment (IPT) of malaria would be an efficacious strategy for reducing anaemia in young children. METHODS: A 9-month cluster-randomised, single-blinded, placebo-controlled intervention trial was carried out in children aged 12-36 months in south-central Côte d'Ivoire, an area of intense and perennial malaria transmission. The study groups were: group 1: normal diet and IPT-placebo (n = 125); group 2: consumption of porridge, an iron-fortified complementary food (CF) with optimised composition providing 2 mg iron as NaFeEDTA and 3.8 mg iron as ferrous fumarate 6 days per week (CF-FeFum) and IPT-placebo (n = 126); group 3: IPT of malaria at 3-month intervals, using sulfadoxine-pyrimethamine and amodiaquine and no dietary intervention (n = 127); group 4: both CF-FeFum and IPT (n = 124); and group 5: consumption of porridge, an iron-fortified CF with the composition currently on the Ivorian market providing 2 mg iron as NaFeEDTA and 3.8 mg iron as ferric pyrophosphate 6 days per week (CF-FePP) and IPT-placebo (n = 127). The primary outcome was haemoglobin (Hb) concentration. Linear and logistic regression mixed-effect models were used for the comparison of the five study groups, and a 2 × 2 factorial analysis was used to assess treatment interactions of CF-FeFum and IPT (study groups 1-4). RESULTS: After 9 months, the Hb concentration increased in all groups to a similar extent with no statistically significant difference between groups. In the 2 × 2 factorial analysis after 9 months, no treatment interaction was found on Hb (P = 0.89). The adjusted differences in Hb were 0.24 g/dl (95 % CI -0.10 to 0.59; P = 0.16) in children receiving IPT and -0.08 g/dl (95 % CI -0.42 to 0.26; P = 0.65) in children receiving CF-FeFum. At baseline, anaemia (Hb <11.0 g/dl) was 82.1 %. After 9 months, IPT decreased the odds of anaemia (odds ratio [OR], 0.46 [95 % CI 0.23-0.91]; P = 0.023), whereas iron-fortified CF did not (OR, 0.85 [95 % CI 0.43-1.68]; P = 0.68), although ID (plasma ferritin <30 μg/l) was decreased markedly in children receiving iron fortified CF (OR, 0.19 [95 % CI 0.09-0.40]; P 

Original publication

DOI

10.1186/s12936-015-0872-3

Type

Journal article

Journal

Malar J

Publication Date

17/09/2015

Volume

14

Keywords

Amodiaquine, Anemia, Antimalarials, Child, Preschool, Cote d'Ivoire, Diphosphates, Drug Combinations, Edetic Acid, Ferric Compounds, Food, Fortified, Hemoglobins, Humans, Infant, Inflammation, Iron, Iron Deficiencies, Malaria, Male, Prevalence, Pyrimethamine, Sulfadoxine