Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Maturity-onset diabetes of the young (MODY) as a result of mutations in hepatocyte nuclear factor 1-α (HNF1A) is often misdiagnosed as type 1 diabetes or type 2 diabetes. Recent work has shown that high-sensitivity C-reactive protein (hs-CRP) levels are lower in HNF1A-MODY than type 1 diabetes, type 2 diabetes, or glucokinase (GCK)-MODY. We aim to replicate these findings in larger numbers and other MODY subtypes. RESEARCH DESIGN AND METHODS: hs-CRP levels were assessed in 750 patients (220 HNF1A, 245 GCK, 54 HNF4-α [HNF4A], 21 HNF1-β (HNF1B), 53 type 1 diabetes, and 157 type 2 diabetes). RESULTS: hs-CRP was lower in HNF1A-MODY (median [IQR] 0.3 [0.1-0.6] mg/L) than type 2 diabetes (1.40 [0.60-3.45] mg/L; P < 0.001) and type 1 diabetes (1.10 [0.50-1.85] mg/L; P < 0.001), HNF4A-MODY (1.45 [0.46-2.88] mg/L; P < 0.001), GCK-MODY (0.60 [0.30-1.80] mg/L; P < 0.001), and HNF1B-MODY (0.60 [0.10-2.8] mg/L; P = 0.07). hs-CRP discriminated HNF1A-MODY from type 2 diabetes with hs-CRP <0.75 mg/L showing 79% sensitivity and 70% specificity (receiver operating characteristic area under the curve = 0.84). CONCLUSIONS: hs-CRP levels are lower in HNF1A-MODY than other forms of diabetes and may be used as a biomarker to select patients for diagnostic HNF1A genetic testing.

Original publication

DOI

10.2337/dc11-0323

Type

Journal article

Journal

Diabetes Care

Publication Date

08/2011

Volume

34

Pages

1860 - 1862

Keywords

Adult, C-Reactive Protein, Diabetes Mellitus, Type 2, Female, Hepatocyte Nuclear Factor 1-alpha, Humans, Male, Middle Aged, Mutation, Young Adult