Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One in every four newborns suffers from congenital heart disease (CHD) that causes defects in the heart structure. The current gold-standard assessment technique, echocardiography, causes delays in the diagnosis owing to the need for experts who vary markedly in their ability to detect and interpret pathological patterns. Moreover, echo is still causing cost difficulties for low- and middle-income countries. Here, we developed a deep learning-based attention transformer model to automate the detection of heart murmurs caused by CHD at an early stage of life using cost-effective and widely available phonocardiography (PCG). PCG recordings were obtained from 942 young patients at four major auscultation locations, including the aortic valve (AV), mitral valve (MV), pulmonary valve (PV), and tricuspid valve (TV), and they were annotated by experts as absent, present, or unknown murmurs. A transformation to wavelet features was performed to reduce the dimensionality before the deep learning stage for inferring the medical condition. The performance was validated through 10-fold cross-validation and yielded an average accuracy and sensitivity of 90.23 % and 72.41 %, respectively. The accuracy of discriminating between murmurs' absence and presence reached 76.10 % when evaluated on unseen data. The model had accuracies of 70 %, 88 %, and 86 % in predicting murmur presence in infants, children, and adolescents, respectively. The interpretation of the model revealed proper discrimination between the learned attributes, and AV channel was found important (score 0.75) for the murmur absence predictions while MV and TV were more important for murmur presence predictions. The findings potentiate deep learning as a powerful front-line tool for inferring CHD status in PCG recordings leveraging early detection of heart anomalies in young people. It is suggested as a tool that can be used independently from high-cost machinery or expert assessment.

Original publication

DOI

10.1109/JBHI.2024.3357506

Type

Journal

IEEE J Biomed Health Inform

Publication Date

04/2024

Volume

28

Pages

1803 - 1814

Keywords

Adolescent, Child, Humans, Infant, Newborn, Heart Auscultation, Deep Learning, Heart Murmurs, Phonocardiography, Auscultation, Heart Defects, Congenital