Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dendritic cells (DCs) are able to present glycolipids to invariant natural killer T (iNKT) cells in vivo. Very few compounds have been found to stimulate iNKT cells, and of these, the best characterised is the glycolipid α-galactosylceramide, which stimulates the production of large quantities of interferon-gamma (IFN-γ) and interleukin-4 (IL-4). However, αGalCer leads to overstimulation of iNKT cells. It has been demonstrated that the αGalCer analogue, threitol ceramide (ThrCer 2), successfully activates iNKT cells and overcomes the problematic iNKT cell activation-induced anergy. In this study, ThrCer 2 has been inserted into the bilayers of liposomes composed of a neutral lipid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), or dimethyldioctadecylammonium bromide (DDA), a cationic lipid. Incorporation efficiencies of ThrCer within the liposomes was 96% for DSPC liposomes and 80% for DDA liposomes, with the vesicle size (large multilamellar vs. small unilamellar vesicles) making no significant difference. Langmuir-Blodgett studies suggest that both DSPC and DDA stack within the monolayer co-operatively with the ThrCer molecules with no condensing effect. In terms of cellular responses, IFN-γ secretion was higher for cells treated with small DDA liposomes compared with the other liposome formulations, suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs. © 2011 Wiley-Liss, Inc. and the American Pharmacists Association.

Original publication

DOI

10.1002/jps.22500

Type

Journal article

Journal

Journal of Pharmaceutical Sciences

Publication Date

01/07/2011

Volume

100

Pages

2724 - 2733