Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microvascular complications are one of the key causes of mortality among type 2 diabetic patients. This study was sought to investigate the use of a novel machine learning approach for predicting these complications using only the patient demographic, clinical, and laboratory profiles. A total of 96 Bangladeshi participants with type 2 diabetes were recruited during their routine hospital visits. All patient profiles were assessed by using a chi-squared (χ2) test to statistically determine the most important markers in predicting three microvascular complications: cardiac autonomic neuropathy (CAN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (RET). A machine learning approach based on logistic regression, random forest (RF), and support vector machine (SVM) algorithms was then developed to ensure automated clinical testing for microvascular complications in diabetic patients. The highest prediction accuracies were obtained by RF using diastolic blood pressure, albumin-creatinine ratio, and gender for CAN testing (98.67%); microalbuminuria, smoking history, and hemoglobin A1C for DPN testing (67.78%); and hemoglobin A1C, microalbuminuria, and smoking history for RET testing (84.38%). This study suggests machine learning as a promising automated tool for predicting microvascular complications in diabetic patients using their profiles, which could help prevent those patients from further microvascular complications leading to early death.

Original publication

DOI

10.3390/jcm11040903

Type

Journal article

Journal

J Clin Med

Publication Date

09/02/2022

Volume

11

Keywords

cardiac autonomic neuropathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, machine learning, microvascular complications, patient profiles